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Abstract

This paper considers the problem of language change. Linguists must explain not only how languages
are learned but also how and why they have evolved along certain trajectories and not others. While the
language learning problem has focused on the behavior of individuals and how they acquire a particular
grammar from a class of grammars G, here we consider a population of such learners and investigate the
emergent, global population characteristics of linguistic communities over several generations. We argue
that language change follows logically from speci�c assumptions about grammatical theories and learning
paradigms. In particular, we are able to transform parameterized theories and memoryless acquisition
algorithms into grammatical dynamical systems, whose evolution depicts a population's evolving linguistic
composition. We investigate the linguistic and computational consequences of this model, showing that
the formalization allows one to ask questions about diachronic that one otherwise could not ask, such as
the e�ect of varying initial conditions on the resulting diachronic trajectories. From a more programmatic
perspective, we give an example of how the dynamical system model for language change can serve as
a way to distinguish among alternative grammatical theories, introducing a formal diachronic adequacy
criterion for linguistic theories.
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1 Introduction

As is well known, languages change over time. Lan-
guage scientists have long been occupied with describ-
ing phonological, syntactic, and semantic change, often
appealing to the analogy between language change and
evolution. Some even suggest that language itself is a
complex adaptive system (see Hawkins and Gell-Mann,
1989). For example, Lightfoot (1991, chapter 7, pp. 163{
65�.) talks about language change in this way: \Some
general properties of language change are shared by other
dynamic systems in the natural world: : : In population
biology and linguistic change there is constant ux..... If
one views a language as a totality, as historians often do,
one sees a dynamic system." Indeed, entire books have
been devoted to the description of language change us-
ing the terminology of population biology: genetic drift,
clines, and so forth1 However, these analogies have rarely
been pursued beyond casual and descriptive accounts.2

In this paper we formalize these intuitions, to the best
of our knowledge for �rst time, as a concrete, computa-
tional, dynamical systems model, and investigating the
consequences of this formalization.

In particular, we show that a model of language
change emerges as a logical consequence of language ac-
quisition, a point made by Lightfoot (1991). We shall
see that Lightfoot's intuition that languages could be-
have just as though they were dynamical systems is es-
sentially correct, as is his proposal for turning language
acquisition models into language change models. We can
provide concrete examples of both \gradual" and \sud-
den" syntactic changes, occurring over time periods of
many generations to just a single generation.3

Many interesting points emerge from the formaliza-
tion, some programmatic:

� Learnability is a well-known criterion for the ad-
equacy of grammatical theories. Our model pro-
vides an evolutionary criterion: By comparing the
trajectories of dynamical linguistic systems to his-
torically observed trajectories, one can determine
the adequacy of linguistic theories or learning al-
gorithms.

� We derive explicit dynamical systems correspond-
ing to parametrized linguistic theories (e.g., the
Head First/Final parameter in head-driven phrase
structure grammars or government-binding gram-
mars) and memoryless language learning algo-
rithms (e.g., gradient ascent in parameter space).

� We illustrate the use of dynamical systems as a
research tool by considering the loss of Verb Sec-
ond position in Old French as compared to Mod-
ern French. We demonstrate by computer model-
ing that one grammatical parameterization in the

1For a recent example, see Nichols (1992), Linguistic Di-

versity in Space and Time.
2Some notable exceptions are Kroch (1990) and Clark and

Roberts (1993).
3Lightfoot 1991 refers to these sudden changes acting

over a single generation as \catastrophic" but in fact this
term usually has a di�erent sense in the dynamical systems
literature.

literature does not seem to permit this historical
change, while another does. We can more accu-
rately model the time course of language change. In
particular, in contrast to Kroch (1989) and others,
who mimic population biology models by impos-
ing S-shaped logistic curves on possible language
changes by assumption, we derive the time course
of language change from more basic assumptions,
and show that it need not be S-shaped; rather, an
S-shape can emerge from more fundamental prop-
erties of the underlying dynamical system.

� We examine by simulation and traditional phase-
space plots the form and stability of possible
\diachronic envelopes" given varying alternative
language distributions, language acquisition algo-
rithms, parameterizations, input noise, and sen-
tence distributions. The results bear on models
of language \mixing"; so-called \wave" models for
language change; and other proposals in the di-
achronic literature.

� As topics for future research, the dynamical sys-
tem model provides a novel possible source for ex-
plaining several linguistic changes including: (a)
the evolution of modern Greek metrical stress as-
signment from proto-Indo-European; and (b) Bick-
erton's (1990) \creole hypothesis," concerning the
striking fact that all creoles, irrespective of linguis-
tic origin, have exactly the same grammar. In the
latter case, the \universality" of creoles could be
due a parameterization corresponding to a com-
mon condensation point of a dynamical system, a
possibility not considered by Bickerton.

2 An Acquisition-Based Model of

Language Change

How does the combination of a grammatical theory and
learning algorithm lead to a model of language change?
We �rst note that just as with language acquisition, there
is a seeming paradox in language change: it is generally
assumed that children acquire their caretaker (target)
grammars without error. However, if this were always
true, at �rst glance grammatical changes within a popu-
lation could seemingly never occur, since generation after
generation children would successfully acquire the gram-
mar of their parents.

Of course, Lightfoot and others have pointed out the
obvious solution to this paradox: the possibility of slight
misconvergence to target grammars could, over several
generations, drive language change, much as speciation
occurs in the population biology sense:

As somebody adopts a new parameter setting,
say a new verb-object order, the output of
that person's grammar often di�ers from that
of other people's. This in turn a�ects the lin-
guistic environment, which may then be more
likely to trigger the new parameter setting in
younger people. Thus a chain reaction may
be created. (Lightfoot, 1991, p. xxx)

We pursue this point in detail below. Similarly, just
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as in the biological case, some of the most commonly
observed changes in languages seem to occur as the result
of the e�ects of surrounding populations, whose features
in�ltrate the original language.

We begin our treatment by arguing that the problem
of language acquisition at the individual level leads log-
ically to the problem of language change at the group
or population level. Consider a population speaking
a particular language4. This is the target language|
children are exposed to primary linguistic data (PLD)
from this source, typically in the form of sentences ut-
tered by caretakers (adults). The logical problem of lan-
guage acquisition is how children acquire this target lan-
guage from their primary linguistic data|to come up
with an adequate learning theory. We take a learning
theory to be simply a mapping from primary linguis-
tic data to the class of grammars, usually e�ective, and
so an algorithm. For example, in a typical inductive
inference model, given a stream of sentences, an acqui-
sition algorithm would simply update its grammatical
hypothesis with each new sentence according to some
preprogrammed procedure. An important criterion for
learnability (Gold, 1967) is to require that the algorithm
converge to the target as the data goes to in�nity (iden-
ti�cation in the limit).

Now suppose that we �x an adequate grammatical
theory and an adequate acquisition algorithm. There are
then essentially two means by which the linguistic com-
position of the population could change over time. First,
if the primary linguistic data presented to the child is al-
tered (due to any number of causes, perhaps to presence
of foreign speakers, contact with another population, dis-
uencies, and the like), the sentences presented to the
learner (child) are no longer consistent with a single tar-
get grammar. In the face of this input, the learning
algorithm might no longer converge to the target gram-
mar. Indeed, it might converge to some other grammar
(g2); or it might converge to g2 with some probability,
g3 with some other probability, and so forth. In either
case, children attempting to solve the acquisition prob-
lem using the same learning algorithm could internalize
grammars di�erent from the parental (target) grammar.
In this way, in one generation the linguistic composition
of the population can change.5

Second, even if the PLD comes from a single tar-
get grammar, the actual data presented to the learner
is truncated, or �nite. After a �nite sample sequence,
children may, with non-zero probability, hypothesize a
grammar di�erent from that of their parents. This can
again lead to a di�ering linguistic composition in suc-
ceeding generations.

In short, the diachronic model is this: Individual chil-
dren attempt to attain their caretaker target grammar.

4In our analysis this implies that all the adult members
of this population have internalized the same grammar (cor-
responding to the language they speak).

5Sociological factors a�ecting language change, a�ect lan-
guage acquisition in exactly the same way, yet are abstracted
away from the formalization of the logical problem of lan-
guage acquisition. In this same sense, we similarly abstract
away such causes here.

After a �nite number of examples, some are success-
ful, but others may misconverge. The next generation
will therefore no longer be linguistically homogeneous.
The third generation of children will hear sentences pro-
duced by the second|a di�erent distribution|and they,
in turn, will attain a di�erent set of grammars. Over suc-
cessive generations, the linguistic composition evolves as
a dynamical system.

On this view, language change is a logical consequence
of speci�c assumptions about:

1. the grammar hypothesis space|a particular
parametrization, in a parametric theory;

2. the language acquistion device|the learning algo-
rithm the child uses to develop hypotheses on the
basis of data;

3. the primary linguistic data|the sentences pre-
sented to the children of any one generation.

If we specify (1) through (3) for a particular gener-
ation, we should, in principle, be able to compute the
linguistic composition for the next generation. In this
manner, we can compute the evolving linguistic compo-
sition of the population from generation to generation;
we arrive at a dynamical system. We now proceed to
make this calculation precise. We �rst review a standard
language acquisition framework, and then show how to
derive a dynamical system from it.

2.1 The Language Acquisition Framework

Let us state our assumptions about grammatical theo-
ries, learning algorithms, and sentence distributions.

1. Denote by G; a family of possible (target) gram-
mars. Each grammar g 2 G de�nes a language L(g) �
�� over some alphabet � in the usual way.

2. Denote by P a distribution on �� according to
which sentences are drawn and presented to the learner.
Note that if there is a well de�ned target, gt; and only
positive examples from this target are presented to the
learner, then P will have all its measure on L(gt); and
zero measure on sentences outside Suppose n examples
are drawn in this fashion, one can then let Dn = (��)n

be the set of all n-example data sets the learner might be
presented with. Thus, if the adult population is linguis-
tically homogeneous (with grammar g1) then P = P1:
If the adult population speaks 50 percent L(g1) and 50
percent L(g2) then P = 1

2
P1 +

1

2
P2.

3. Denote by A the acquisition algorithm that chil-
dren use to hypothesize a grammar on the basis of in-
put data. A can be regarded as a mapping from Dn

to G: Thus, acting upon a particular presentation se-
quence dn 2 Dn; the learner posits a hypothesis A(dn) =
hn 2 G: Allowing for the possibility of randomization,
the learner could, in general, posit hi 2 G with probabil-
ity pi for such a presentation sequence dn: The standard
(stochastic version) learnability criterion (Gold, 1967)
can then be stated as follows:

For every target grammar, gt 2 G; with positive-only
examples presented according to P as above, the learner
must converge to the target with probability 1, i.e.,

Prob[A(dn) = gt] �!n!1 1
2



For an analysis of learnability issues for memoryless
algorithms in �nite parameter spaces, consult Niyogi
(1995) .

2.2 From Language Learning to Popuation
Dynamics

The framework for language learning has learners at-
tempting to infer grammars on the basis of linguistic
data. At any point in time, n; (i.e., after hearing n ex-
amples) the learner has a current hypothesis, h; with
probability pn(h): What happens when there is a pop-
ulation of learners? Since an arbitrary learner has a
probability pn(h) of developing hypothesis h (for every
h 2 G); it follows that a fraction pn(h) of the population
of learners internalize the grammar h after n examples.
We therefore have a current state of the population after
n examples. This state of the population might well be
di�erent from the state of the parent population. As-
sume for now that after n examples, maturation occurs,
i.e., after n examples the learner retains the grammat-
ical hypothesis for the rest of its life. Then one would
arrive at the state of the mature population for the next
generation.6 This new generation now produces sen-
tences for the following generation of learners according
to the distribution of grammars in its population. Then,
the process repeats itself and the linguistic composition
of the population evolves from generation to generation.

We can now de�ne a discrete time dynamical system
by providing its two necessary components:
A State Space: a set of system states, S. Here the
state space is the space of possible linguistic composi-
tions of the population. Each state is described by a
distribution Ppop on G describing the language spoken
by the population.7 At any given point in time, t, the
system is in exactly one state s 2 S;
An Update Rule: how the system states change from
one time step to the next. Typically, this involves spec-
ifying a function, f; that maps st 2 S to st+1

8

For example, a typical linear dynamical system might
consist of state variables x (where x is a k-dimensional
state vector) and a system of di�erential equations x0 =
Ax (A is a matrix operator) which characterize the evo-
lution of the states with time. RC circuits are a simple
example of linear dynamical systems. The state (cur-
rent) evolves as the capcitor discharges through the re-
sistor. Population growth models (for example, using
logistic equations) provide other examples.

6Maturation seems to be a reasonable hypothesis in this
context. After all, it seems even more unreasonable to imag-
ine that learners are forever wandering around in hypoth-
esis space. There is evidence from developmental psychol-
ogy to suggest that this is the case, and that after a certain
point children mature and retain their current grammatical
hypotheses forever.

7As usual, one needs to be able to de�ne a �-algebra on the
space of grammars, and so on. This is unproblematic for the
cases considered in this paper because the set of grammars
is �nite.

8In general, this mapping could be fairly complicated. For
example, it could depend on previous states, future states,
and so forth; for reasons of space we do not consider all pos-
sibilities here. For reference, see Strogatz, 1993.
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Figure 1: A simple illustration of the state space for the
3-parameter syntactic case. There are 8 grammars. A
probability distribution on these 8 grammars, as shown
above, can be interpreted as the linguistic composition
of the population. Thus, a fraction P1 of the population
have internalized grammar, g1; and so on.

As as linguistic example, consider the three parameter
syntactic space described in Gibson and Wexler (1994).
This de�nes 8 possible \natural" grammars. Thus G has
8 elements. We can picture a distribution on this space
as shown in �g. 1. In this particular case, the state space
is

S = fP 2 R8
j

8X

i=1

Pi = 1g

Here we interpret the state as the linguistic compo-
sition of the population.9 For example, a distribution
that puts all its weight on grammar g1 and 0 everywhere
else indicates a homogeneous population that speaks a
language corresponding to grammar g1: Similarly, a dis-
tribution that puts a probability mass of 1/2 on g1 and
1/2 on g2 denotes a population (nonhomogeneous) with
half its speakers speaking a language corresponding to
g1 and half speaking a language corresponding to g2:

To see in detail how the update rule may be com-
puted, consider the acquisition algorithm,A. For exam-
ple, given the state at time t; (Ppop;t), the distribution
of speakers in the parental population, one can obtain
the distribution with which sentences from �� will be
presented to the learner. To do this, imagine that the
ith linguistic group in the population, speaking language
Li, produces sentences with distribution Pi. Then for
any ! 2 ��; the probability with which ! is presented
to the learner is given by

P (!) =
X

i

Pi(!)Ppop;t(i)

This �xes the distribution with which sentences are
presented to the learner. The logical problem of lan-
guage acquisition also assumes some success criterion for
attaining the mature target grammar. For our purposes,
we take this as being one of two broad possibilities: ei-
ther (1) the usual Gold scenario of identi�cation in the
limit, what we shall call the limiting sample case; or (2)

9Note that we do not allow for the possibility of a single

learner having more than one hypothesis at a time; an ex-
tension to this case, in which individuals would more closely
resemble the \ensembles" of particles in a thermodynamic
system is left for future research.
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identi�cation in a �xed, �nite time, what we shall call
the �nite sample case.10

Consider case (2) �rst. Here, one draws n example
sentences according to distribution P , and the acquisi-
tion algorithm develops hypotheses (A(dn) 2 G). One
can, in principle, compute the probability with which
the learner will posit hypothesis hi after n examples:

Finite Sample: Prob[A(dn) = hi] = pn(hi) (1)

The �nite sample situation is always well de�ned|the
probability pn always exists.11.

Now turn to case (1), the limiting case. Here learn-
ability requires pn(gt) to go to 1, for the unique target
grammar, gt, if such a grammar exists. However, in gen-
eral there need not be a unique target grammar since
the linguistic population can be nonhomogeneous. Even
so, the following limiting behavior might still exist:

Limiting Sample: lim
n!1

Prob[A(dn) = hi] = p(hi)

(2)
Turning from the individual child to the population,

since the individual child internalizes grammar hi 2 G

with probability pn(hi) in the \�nite sample" case or
with probability p(hi) \in the limit", in a population of
such individuals one would therefore expect a proportion
pn(hi) or p(hi) respectively to have internalized grammar
hi. In other words, the linguistic composition of the next
generation is given by Ppop;t+1(hi) = pn(hi) for the �nite
sample case and by Ppop;t+1(hi) = p(hi) in the limiting
sample case . In this fashion,

Ppop;t �!
A Ppop;t+1

Remarks. 1. For a Gold-learnable family of languages
and a limiting sample assumption, homogeneous popu-
lations are always stable. This is simply because each
child and therefore the entire population always even-
tually converges to a single target grammar, generation
after generation.

2. However, �nite sample case is di�erent from the
limiting sample case. Suppose we have solved the mat-
uration problem, that is, we know roughly the time, or
number of examples N the learner takes to develop its
mature (adult) hypothesis. In that case pN (h) is the
probability that a child internalizes the grammar h, and
pN (h) is the percentage of speakers of Lh in the next
generation. Note that under this �nite sample analy-
sis, even for a homogeneous population with all adults

10Of course, a variety of other success criteria, e.g., con-
vergence within some epsilon, or polynomial in the size of
the target grammar, are possible; each leads to potentially
di�erent language change model. We do not pursue these
alternatives here.

11This is easy to see for deterministic algorithms, Adet:

Such an algorithm would have a precise behavior for every
data set of n examples drawn. In our case, the examples
are drawn in i.i.d. fashion according to a distribution P on
��: It is clear that pn(hi) = P [fdnjAdet(dn) = hig]: For
randomized algorithms, the case is trickier, though tedious,
but the probability still exists because all the �nite choice
paths over all sequences of length n is enumerable. Previous
work (Niyogi and Berwick, 1993,1994a,1994b) shows how to
compute pn for randomized memoryless algorithms.

speaking a particular language (corresponding to gram-
mar, g; say), pN (g) will not be 1|that is, there will be
a small percentage of learners who have misconverged.
This percentage could blow up over several generations,
and we therefore have potentially unstable languages.

3. The formulation is very general. Any fA;G;Pig

triple yields a dynamical system.12. In short:

(G;A; fPig) �! D( dynamical system)

4. The formulation also does not assume any particu-
lar linguistic theory, learning algorithm, or distribution
with which sentences are drawn. Of course, we have im-
plicitly assumed a learning model, i.e., positive examples
are drawn in i.i.d. fashion and presented to the learner.
Our dynamical systems formalization follows as a log-
ical consequence of this learning framework. One can
conceivably imagine other learning frameworks|these
would potentially give rise to other kinds of dynamical
systems|but we do not formalize them here.

This completes the abstract formulation of the dy-
namical system model. Next, we choose speci�c linguis-
tic theories and learning paradigms to model particular
kinds of language changes, with the goal of answering
the following questions:

� Can we really compute all the relevant quantities
to specify the dynamical system?

� Can we evaluate the behavior (phase-space charac-
teristics) of the resulting dynamical system?

� Does the
dynamical system model|the formalization|shed
light on diachronic models and linguistic theories
generally?

In the remainder of this paper, we give some concrete
answers to these questions within the principles and pa-
rameters theory of modern linguistics.

3 Language Change in Parametric

Systems

In previous works (Niyogi and Berwick, 1993, 1994a,
1994b; Niyogi, 1995), we investigated the problem of
learnability within parametric systems. In particular, we
showed that the behavior of any memoryless algorithm
can be modeled as a Markov chain. This analysis allows
us to solve equations 1 and 2, and thus obtain the up-
date equations of the associated dynamical system. Let
us now show how to derive such models in detail. We
�rst provide the particular G;A; fPig triple, and then
give the update rule.

The learning system triple.

1. G: Assume there are n parameters|this leads to a
space G with 2n di�erent grammars.

2. A: Let us imagine that the child learner follows
some memoryless (incremental) algorithm to set
parameters. For the most part, we will assume that

12Note that this probability could evolve with generations
as well. That will complete all the logical possibilites. How-
ever, for simplicity, we assume that this does not happen.
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the algorithm is the \triggering learning algorithm"
or TLA (the single step, gradient-ascent algorithm
of Gibson and Wexler, 1994) or one of the variants
discussed in Niyogi and Berwick (1993).

3. fPig: Let speakers of the ith language, Li; in the
population produce sentences according to the dis-
tribution Pi. For the most part we will assume in
our simulations that this distribution is uniform on
degree-0 (unembedded) sentences, exactly as in the
learnability analysis of Gibson and Wexler 1994 or
Niyogi and Berwick 1993.

The update rule. We can now compute the update
rule associated with this triple. Suppose the state of the
parental population is Ppop;n on G: Then one can obtain
the distribution P on the sentences of �� according to
which sentences will be presented to the learner. Once
such a distribution is obtained, then given the Markov
equivalence established earlier, we can compute the tran-
sition matrix T according to which the learner updates
its hypotheses with each new sentence. From T one can
�nally compute the following quantities, one for the \�-
nite sample" case and one for the \limiting sample" case:

Prob[ Learner's hypothesis = hi 2 G after m examples]

= f 1

2n
(1; : : : ; 1)0Tmg[i]

Similary, making use of the limiting distributions of
Markov chains (Resnick, 1992) one can obtain the fol-
lowing (where ONE is a 1

2n
�

1

2n
matrix with all ones).

Prob[ Learner's hypothesis = hi\in the limit"]

= (1; : : : ; 1)0(I � T + ONE)�1

These expressions allow us to compute the linguistic
composition of the population from one generation to
the next according to our analysis of the previous sec-
tion.

Remark. The limiting distribution case is more com-
plex than the �nite sample case and requires some careful
explanation. There are two possibilities. If there is just a
single target grammar, then, by de�nition, the learners
all identify the target correctly in the limit, and there
is no further change in the linguistic composition from
generation to generation. This case is essentially unin-
teresting. If there are two or more target grammars,
then recalling our analysis of learnability (Niyogi and
Berwick, 1994), there can be no absorbing states in the
Markov chain corresponding to the parametric grammar
family. In this situation, a single learner will oscillate
between some set of states in the limit. In this sense,
learners will not converge to any single, correct target
grammar. However, there is a sense in which we can
characterize limiting behavior for learners: although a
given learner will visit each of these states in�nitely of-
ten in the limit, it will visit some more often than others.
The exact percentage the learner will be in a particular
state is given by equation 3 above. Therefore, since we
know the fraction of the time the learner spends in each

grammatical state in the limit, we assume that this is
the probability with which it internalizes the grammar
corresponding to that state in the Markov chain.

Summarizing, we provide the basic computational
framework for modeling language change:

1. Let �1 be the initial population mix, i.e., the per-
centage of di�erent language speakers in the com-
munity. Assuming that the ith group of speakers
produces sentences with probability Pi; we can ob-
tain the probability P with which sentences in ��

occur for the next generation of learners.

2. From P we can obtain the transition matrix T for
the Markov learning model and the limiting distri-
bution of the linguistic composition �2 for the next
generation.

3. The second generation now has a population mix
of �2. We repeat step 1 and obtain �3. Continuing
in this fashion, in general we can obtain �i+1 from
�i.

We next turn to speci�c applications of this model.
We begin with a simple 3-parameter system as our �rst
example, considering variations on the learning algo-
rithm, sentence distributions, and sample size available
for learning. We then consider a di�erent, 5-parameter
system already presented in the literature (Clark and
Roberts, 1993) as one intended to partially characterize
the change from Old French to Modern French.

4 Example 1: A Three Parameter

System

The previous section developed the necessary mathemat-
ical and computational tools to completely specify the
dynamical systems corresponding to memoryless algo-
rithms operating on �nite parameter spaces. In this ex-
ample we investigate the behavior of these dynamical
systems. Recall that every choice of (G;A; fPig) gives
rise to a unique dynamical system. We start by making
speci�c choices for these three elements:

1. G : This is a 3-parameter syntactic subsystem de-
scribed in Gibson and Wexler (1994). Thus G has
exactly 8 grammars, generating languages from L1
through L8, as shown in the appendix of this paper
(taken from Gibson and Wexler, 1994).

2. A : The memoryless algorithms we consider are the
TLA, and variants by dropping either or both of the
single-valued and greediness constraints.

3. fPig : For the most part, we assume sentences are
produced according to a uniform distribution on
the degree-0 sentences of the relevant language, i.e.,
Pi is uniform on (degree-0 sentences of) Li:

Ideally of course, a complete investigation of di-
achronic possibilities would involve varying G, A, and
P and characterizing the resulting dynamical systems
by their phase space plots. Rather than explore this en-
tire space, we �rst consider only systems evolving from
homogeneous initial populations, under four basic vari-
ants of the learning algorithm A. This will give us an
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Initial Language Change to Language?
(�V 2) 1 2 (0.85), 6 (0.1)
(+V 2) 2 2 (0.98); stable
(�V 2) 3 6 (0.48), 8(0.38)
(+V 2) 4 4 (0.86); stable
(�V 2) 5 2 (0.97)
(+V 2) 6 6 (0.92); stable
(�V 2) 7 2 (0.54), 4(0.35)
(+V 2) 8 8 (0.97); stable

Table 1: Language change driven by misconvergence
from a homogeneous initial linguistic population. A
�nite-sample analysis was conducted allowing each child
learner 128 examples to internalize its grammar. Af-
ter 30 generations, initial populations drifted (or not, as
shown in the table) to di�erent �nal linguistic composi-
tions.

initial grasp of how linguistic populations can change.
Indeed, linguistic change has been studied before; even
the dynamical system metaphor itself has been invoked.
Our computational paradigm lets us say muchmore than
these previous descriptions: (1) we can say precisely
what the rates of change will be; (2) we can determine
what diachronic population curve changes will look like,
without stipulating in advance that they must be S-
shaped (sigmoid) or not, and without curve �tting to
a pre-de�ned functional form.

4.1 Homogeneous Initial Populations

First we consider the case of a homogeneous
population|no noise or confounding factors like foreign
target languages. How stable are the languages in the
3-parameter system in this case? To determine this, we
begin with a �nite-sample analysis with n = 128 ex-
ample sentences (recall by the analysis of Niyogi and
Berwick (1993,1994a,1994b) that learners converge to
target languages in the 3-parameter system with high
probability after hearing this many sentences). Some
small proportion of the children misconverge; the goal
is to see whether this small proportion can drive lan-
guage change|and if so, in what direction. To give
the reader some idea of the possible outcomes, let us
consider the four possible variations in the learning al-
gorithm (�Single-step, �Greedy)holding �xed the sen-
tence distributions and learning sample.

4.1.1 Variation 1: A = TLA (+Single Step,
+Greedy); Pi = Uniform; Finite Sample
= 128

Suppose the learning algorithm is the triggering learn-
ing algorithm (TLA). The table below shows the lan-
guage mix after 30 generations. Languages are numbered
from 1 to 8. Recall that +V2 refers to a language that
has the verb second property, and �V2 one that does
not.

Observations. Some striking patterns regarding the
resulting population mixes can be noted.

1. First, all the +V2 languages are relatively stable,
i.e., the linguistic composition did not vary signi�-

cantly over 30 generations. This means that every
succeeding generation acquired the target parame-
ter settings and no parameter drifts were observed
over time.

2. In contrast, populations speaking �V2 languages all
drift to +V2 languages. Thus a population speak-
ing L1 winds up speaking mostly L2 (85%). A
population speaking language L7 gradually shifts
to a population with 54 percent speaking L2 and
35 percent speaking L4 (with a smattering of other
speakers) and apparently remains basically stable
in this mix thereafter. Note that the relative sta-
bility of +V2 languages and the tendency of �V2
languages to drift to +V2 is exactly contrary to evi-
dence in the linguistic literature. Lightfoot (1991),
for example, claims that the tendency to lose V2
dominates the reverse tendency in the world's lan-
guages. Certainly, both English and French lost
the V2 parameter setting|an empirically observed
phenomenon that needs to be explained. Immedi-
ately then, we see that our dynamical system does
not evolve in the expected manner. The reason
could be due to any of the assumptions behind
the model: the the parameter space, the learning
algorithm, the initial conditions, or the distribu-
tional assumptions about sentences presented to
learners. Exactly which is in error remains to be
seen, but nonetheless our example shows concretely
how assumptions about a grammatical theory and
learning theory can make evolutionary, diachronic
predictions|in this case, incorrect predictions that
falsify the assumptions.

3. The rates at which the linguistic composition
changes vary signi�cantly from language to lan-
guage. Consider for example the change of L1 to
L2: Figure 2 below shows the gradual decrease in
speakers of L1 over successive generations along
with the increase in L2 speakers. We see that over
the �rst 6 or seven generations very little change
occurs, but over the next 6 or seven generations
the population changes at a much faster rate. Note
that in this particular case the two languages di�er
only in the V2 parameter, so the curves essentially
plot the gain of V2. In contrast, consider �gure 3
which shows the decrease of L5 speakers and the
shift to L2: Here we note a sudden change: over
a space of just 4 generations, the population shifts
completely. Analysis of the time course of language
change has been given some attention in linguistic
analyses of diachronic syntax change, and we re-
turn to this issue below.

4. We see that in many cases a homogeneous popula-
tion splits up into di�erent linguistic groups, and
seems to remain stable in that mix. In other words,
certain combinations of language speakers seem to
asymptote towards equilibrium (at least through
30 generations). For example, a population of L7
speakers shifts over 5{6 generations to one with 54
percent speaking L2 and 35 percent speaking L4
and remains that way with no shifts in the distri-
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Figure 2: Percentage of a population speaking languages
L1 and L2, measured on the Y-axis, as the population
evolves over some number of generations, measured on
the X-axis. The plot has been shown only up to 20 gen-
erations, as the proportions of L1 and L2 speakers do not
vary signi�cantly thereafter. Note that this curve is \S"
shaped. Kroch(1989) imposes such a shape using models
from population biology, while we derive this shape as
an emergent property of our dynamical model. L1 and
L2 di�er only in the V2 parameter setting.

bution of speakers. Of course, we do not know for
certain whether this is really a stable mixture. It
could be that the population mix could suddenly
shift after another 100 generations. What we re-
ally need to do is characterize the stable points or
\limit cycles" of these dynamical systems. Other
linguistic mixes can be inherently unstable; they
might drift systematically to stable situations, or
might shift dramatically (as with language L1).

5. It seems that the observed instability and drifts are
to a large extent an artifact of the learning algo-
rithm. Remember that the TLA su�ers from the
problem of local maxima.13 We note that those
languages whose acquisition is not impeded by lo-
cal maxima (the +V2 languages) are stable over
time. Languages that have local maxima are un-
stable; in particular they drift to the local maxima
over time. Consider L7. If this is the target lan-
guage, then there are two local maxima (L2 and
L4) and these are precisely the states to which the
system drifts over time. The same is true for lan-
guages L5 and L3. In this respect, the behavior
of L1 is quite unusual since it actually does not
have any local maxima, yet it tends to ip the V2

13We regard local maxima of a language Li to be alter-
native absorbing states (sinks) in the Markov chain for that
target language. This formulation di�ers slightly from the
conception of local maxima in Gibson and Wexler (1994),
a matter discussed at some length in Niyogi and Berwick
(1993). Thus according to our de�nition L4 is not a local
maxima for L5 and consequently no shift is observed.
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Figure 3: Percentage of the population speaking lan-
guages L5 and L2 as the population evolves over a num-
ber of generations. Note that a complete shift from L5
to L2 occurs over just 4 generations.

parameter over time.

Now let us consider a di�erent learning algorithm
from the TLA that does not su�er from local maxima
problems, to see whether this changes the dynamical sys-
tem results.

4.1.2 Variation 2: A = +Greedy, �Single value;
Pi = Uniform; Finite Sample = 128

Consider a simple variant of the TLA obtained by
dropping the single valued constraint. This implies that
the learner is no longer constrained to change just one
parameter at a time: on being presented with a sen-
tence it cannot analyze, it chooses any of the alternative
grammars and attempts to analyze the sentence with it.
Greediness is retained; thus the learner retains its origi-
nal hypothesis if the new one is also not able to analyze
the sentence. Given this new learning algorithm, and re-
taining all the other original assumptions, Table 2 shows
the distribution of speakers after 30 generations.

Observations. In this situation there are no local
maxima, and the evolutionary pattern takes on a very
di�erent nature. There are two distinct observations to
be made.

1. All homogeneous populations eventually drift to a
strikingly similar population mix, irrespective of
what language they start from. What is unique
about this mix? Is it a stable point (or attrac-
tor)? Further simulations and theoretical analyses
are needed to resolve this question; we leave these
as open questions.

2. All homogeneous populations drift to a population
mix of only +V2 languages. Thus, the V2 parame-
ter is gradually set over succeeding generations by
all people in the community (irrespective of which
language they speak). In other words, as before,
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Initial Language Change to Language?
�V 2 1 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)
+V 2 2 2 (0.42), 4 (0.19), 6 (0.17), 8 (0.12)
�V 2 3 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V 2 4 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)
�V 2 5 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V 2 6 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
�V 2 7 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V 2 8 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

Table 2: Language change driven by misconvergence. A
�nite-sample analysis was conducted allowing each child
learner (following the TLA with single-value dropped)
128 examples to internalize its grammar. Initial popula-
tions were linguistically homogeneous, and they drifted
to di�erent linguistic compositions. The major language
groups after 30 generations have been listed in this table.
Note how all initially homogeneous populations tend to
the same composition.

there is a tendency to gain V2 rather than lose V2,
contrary to the empirical facts.

As an example, �g. 4 shows the changing percentage
of the population speaking the di�erent languages start-
ing o� from a homogeneous population speaking L5: As
before, learners who have not converged to the target in
128 examples are the driving force for change here. Note
again the time evolution of the grammars. For about
5 generations there is only a slight decrease in the per-
centage of speakers of L5: Then the linguistic patterns
switch rapidly over the next 7 generations to a relatively
stable mix.

4.1.3 Variations 3 & 4: �Greedy, �Single
Value constraint; Pi =Uniform; Finite
Sample = 128

Having dropped the single value constraint, we con-
sider the next obvious variation in the learning algo-
rithm: dropping greediness while varying the single value
constraint. Again, our goal is to see whether this makes
any di�erence in the resulting dynamical system. This
gives rise to two di�erent learning algorithms: (1) al-
low the learning algorithm to pick any new grammar at
most one parameter value away from its current hypoth-
esis (retaining the single-value constraint, but without
greediness, that is, the new grammar does not have to
be able to parse the current input sentence); (2) allow
the learning algorithm to pick any new grammar at each
step (no matter how far away from its current hypothe-
sis).

In both cases, the population mix after 30 generations
is the same irrespective of the initial language of the
homogeneous population. These results are shown in
table 3.

Observations:

1. Both algorithms yield dynamical systems that ar-
rive at the same population mix after 30 genera-
tions. The path by which they arrive at this mix
is, however, not the same (see �gure 5).
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Figure 4: Time evolution of grammars using a greedy
learning algorithm with no single value constraint in
place.

Initial Language Change to Language?
Any Language 1 (0.11), 2 (0.16), 3 (0.10), 4 (0.14)
(Homogeneous) 5 (0.12), 6 (0.14), 7 (0.10), 8 (0.13)

Table 3: Language change driven by misconvergence, us-
ing two di�erent acquisition algorithms that do not obey
a local gradient-ascent rule (a greediness constraint). A
�nite-sample analysis was conducted with the learning
algorithm following a random-step algorithm or else a
single-step algorithm, along with 128 examples to inter-
nalize its grammar. Initial populations were linguisti-
cally homogeneous, and they drifted to di�erent linguis-
tic compositions. The major language groups after 30
generations have been listed in this table. Note that all
initially homogeneous populations converge to the same
�nal composition.

2. The �nal population mix contains all languages in
signi�cant proportion. This is in distinct contrast
to the previous situations, where we saw that �V2
languages were eliminated over time.

4.2 Modeling Diachronic Trajectories

With a basic notion of how diachronic systems can evolve
given di�erent learning algorithms, we turn next to the
question of population trajectories. While we can al-
ready see that some evolutionary trajectories have a \lin-
guistically classical" S-shape, their smoothness can vary.
However, our formalization allows us to say much more
than this. Unlike the previous work in diachronic lin-
guistics that we are familiar with, we can explore the
space of possible trajectories, examining factors that af-
fect their evolutionary time course, without assuming an
a priori S-shape.

For example, Bailey (1973) proposed a \wave" model
of linguistic change: linguistic replacements follow an S-
shaped curve over time. In Bailey's own words (taken
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Figure 5: Time evolution of linguistic composition for
the situations where the learning algorithm is �Greedy,
+Single Value constraint (dotted line), and �Greedy,
�Single Value (solid line). Only the percentage of peo-
ple speaking L1 (-V2) and L2 (+V2) are shown. The
initial population is homogeneous and speaks L1: The
percentage of L1 speakers gradually decreases to about
11 percent. The percentage of L2 speakers rises to about
16 percent from 0 percent. The two dynamical systems
converge to the same population mix; however, their tra-
jectories are not the same|the rates of change are dif-
ferent, as shown in this plot.

from Kroch, 1990):

A given change begins quite gradually; af-
ter reaching a certain point (say, twenty per-
cent), it picks up momentum and proceeds
at a much faster rate; and �nally tails o�
slowly before reaching completion. The re-
sult is an S-curve: the statistical di�erences
among isolects in the middle relative times of
the change will be greater than the statistical
di�erences among the early and late isolects.

The idea that linguistic changes follow an S-curve has
also been proposed by Osgood and Sebeok (1954) and
Weinreich, Labov, and Herzog (1968). More speci�c lo-
gistic forms have been advanced by Altmann (1983) and
Kroch (1982,1989). Here, the idea of a logistic func-
tional form is borrowed from population biology where
it is demonstrable that the logistic governs the replace-
ment of organisms and of genetic alleles that di�er in
Darwinian �tness. However, Kroch (1989) concedes that
\unlike in the population biology case, no mechanism of
change has been proposed from which the logistic form
can be deduced."

Crucially, in our case, we suggest a speci�c mechanism
of change: an acquisition-based model where the combi-
nation of grammatical theory, learning algorithms, and
distributional assumptions on sentences drive change.
The speci�c form might or might not be S-shaped, and

might have varying rates of change.14

Among the other factors that a�ect evolutionary tra-
jectories are maturation time|the number of sentences
available to the learner before it internalizes its adult
grammar|and the distributions with which sentences
are presented to the learner. We examine these in turn.

4.2.1 The E�ect of Maturation Time or
Sample Size

One obvious factor inuencing the evolutionary tra-
jectories is the maturational time, i.e., the number (N )
of sentences the child is allowed to hear before forming
its mature hypothesis. This was �xed at 128 in all the
systems shown so far (based in part on our explicit com-
putation for the Markov convergence time in this situa-
tion). Figure 6 shows the e�ect of varying N on the evo-
lutionary trajectories. As usual, we plot only a subspace
of the population. In particular, we plot the percentage
of L2 speakers in the population with each succeeding
generation. The initial composition of the population
was homogeneous (with people speaking L1).

Observations.

1. The initial rate of change of the population is high-
est when the maturation time is smallest , i.e., the
learner is allowed the least amount of time to de-
velop its mature hypothesis. This is not surprising.
If the learner were allowed access to a lot of exam-
ples to make its mature hypothesis, most learners
would reach the target grammar. Very few would
misconverge, and the linguistic composition would
change little over the next generation. On the other
hand, if the learner were allowed very few examples
to develop its hypothesis, many would misconverge,
possibly causing great change over one generation.

2. The \stable" linguistic compositions seem to de-
pend upon maturation time. For example, if learn-
ers are allowed only 8 examples, the percentage of
L2 speakers rises quickly to about 0.26. On the
other hand, if learners are allowed 128 examples,
the percentage of L2 speakers eventually rises to
about 0.41.

3. Note that the trajectories do not have an S-shaped
curve in contrast to the results of Kroch (1989).

4. The maturation time is related to the order of the
dynamical system.

14Of course, we do not mean to say that we can simu-
late any possible trajectory|that would make the formalism
empty. Rather, we are exploring the initial space of possi-
ble trajectories, given some example initial conditions that
have been already advanced in the literature. Because the
mathematics for dynamical systems is in general quite com-
plex, at present we cannot make general statements of the
form, \under these particular initial conditions the trajec-
tory will be sigmoidal, and under these other conditions it
will not be." We have conducted only very preliminary inves-
tigations demonstrating that potentially at least, reasonable,
distinct initial conditions can lead to demonstrably di�erent
trajectories.
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Figure 6: Time evolution of linguistic composition when
varying maturation time (sample size). The learning al-
gorithm used is the +Greedy, �Single value. Only the
percentage of people speaking L2 (+V2) is shown. The
initial population is homogeneous and speaks L1: The
maturation time was varied through 8, 16, 32, 64, 128,
and 256, giving rise to the six curves shown. The curve
with the highest initial rate of change corresponds to 8
examples for maturation time. The initial rate of change
decreases as the maturation timeN increases. The value
at which these curves asymptote also seems to vary with
the maturation time, and increases monotonically with
it.

4.2.2 The E�ect of Sentence Distributions
(Pi :)

Another important factor inuencing evolutionary
trajectories is the distribution Pi with which sentences
of the ith language, Li; are presented to the learner. In
a certain sense, the grammatical space and the learn-
ing algorithm jointly determine the order of the dynam-
ical system. On the other hand, sentence distributions
are much like the parameters of the dynamical system
(see sec. 4.3.2). Clearly the sentence distributions a�ect
rates of convergence within one generation. Further, by
putting greater weight on certain word forms rather than
others, they might inuence systemic evolution in cer-
tain directions. While this is again an obvious point, the
model lets us consider the alternatives precisely.

To illustrate the idea, consider the following example:
the interaction between L1 and L2 speakers in the com-
munity as the sentence distributions with which these
speakers produce sentences changes. Recall that so far
we have assumed that all speakers produce sentences
with uniform distributions on degree-0 sentences of their
respective languages. Now we consider alternative dis-
tributions, parameterized by a value p:

1. Let L1;2 = L1 \ L2:

2. P1 : Speakers of L1 produce sentences so that all
degree-0 sentences of L1;2 are equally likely and
their total probability is p: Further, sentences of

L1nL1;2 are also equally likely, but their total proa-
bility is 1� p:

3. P2 : Speakers of L2 produce sentences so that all
degree-0 sentences of L1;2 are equally likely and
their total probability is p: Further, sentences of
L2nL1;2 are also equally likely, but their total proa-
bility is 1� p:

4. Other Pi's are all uniform over degree-0 sentences.

The parameter p determines the weight on the sen-
tence patterns in common between the languages L1 and
L2: Figure 7 shows the evolution of the L2 speakers as p
varies. Here the learning algorithm is +Greedy, +Single
value (TLA, or local gradient ascent) and the initial pop-
ulation is homogeneous, 100% L1; 0% L2. Note that the
system moves in di�erent ways as p varies. When p is
very small (0.05), that is, sentences common to L1 and
L2 occur infrequently, in the long run the percentage
of L2 speakers does not increase; the population stays
put with L1. However, as p grows, more strings of L2
occur, and the dynamical system changes so that the
long-term percentage of L1 speakers decreases and that
of L2 speakers increases. When p reaches 0.75 the ini-
tial population evolves into a completely L2 speaking
community. After this, as p increases further, we no-
tice (see p = 0:95) that the L2 speakers increase but
can never rise to 100 percent of the population; there
is still a residual L1 speaking component. This is to be
expected, because for such high values of p;many strings
common to L1 and L2 occur frequently. This means that
a learner could sometimes converge to L1 just as well as
L2, and some learners indeed begin to do so, increasing
the number of the L1 speakers.

This example shows us that if we wanted a homoge-
neous L1 speaking population to move to a homogeneous
L2 speaking population, by choosing our distributions
appropriately, we could drive the grammatical dynami-
cal system in the appropriate direction. It suggests an-
other important application of the dynamical system ap-
proach: one can work backwards, and examine the con-
ditions needed to generate a change of a certain kind. By
checking whether such conditions could have possibly ex-
isted historically, we can falsify a grammatical theory or
a learning paradigm. Note that this example showed the
e�ect of sentence distributions, and how to alter them
to obtain desired evolutionary envelopes. One could, in
principle, alter the grammatical theory or the learning
algorithm in the same fashion|-leading to a tool to aid
the search for an adequate linguistic theory.15

4.3 Nonhomogeneous Populations:
Phase-Space Plots

For our three-parameter system, we have been able to
characterize the update rules for the dynamical systems
corresponding to a variety of learning algorithms. Each

15Again, we stress that we obviously do not want so weak
a theory that we can arrive at any possible initial conditions
simply by carrying out reasonable changes to the sentence
distributions. This may, of course, be possible; we have not
yet examined the general case.
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Figure 7: The evolution of L2 speakers in the community
for various values of p (a parameter related to the sen-
tence distributions Pi, see text). The algorithmused was
the TLA, the inital population was homogeneous, speak-
ing only L1: The curves for p = 0:05; 0:75; and 0:95 have
been plotted as solid lines.

dynamical system has a speci�c update procedure ac-
cording to which the states evolve from some homoge-
neous initial population. A more complete characteri-
zation of the dynamical system would be achieved by
obtaining phase-space plots of this system. Such phase-
space plots are pictures of the state-space S �lled with
trajectories obtained by letting the system evolve from
various initial points (states) in the state space.

4.3.1 Phase-Space Plots: Grammatical
Trajectories

We have described earlier the relationship between
the state of the population in one generation and the
next. In our case, let � denote an 8-dimensional vector
variable (state variable). Speci�cally, � = (�1; : : : ; �8)

0

(with
P8

i=1 �i) as we discussed before. The following
schema reiterates the chain of dependencies involved in
the update rule governing system evolution. The state
of the population at time t (in generations), allows us to
compute the transition matrix T for the Markov chain
associated with the memoryless learner. Now, depending
upon whether we want (1) an asymptotic analysis or (2)
a �nite sample analysis, we compute (1) the limiting
behavior of Tm as m (the number of examples) goes to
in�nity (for an asymptotic analysis), or (2) the value of
TN (where N is the number of examples after which
maturation occurs). This allows us to compute the next
state of the population. Thus �(t + 1) = g(�(t)) where
g is a complex non-linear relation.

�(t) =) P on �� =) T =) Tm =) �(t + 1)

If we choose a certain initial condition �1; the system will
evolve according to the above relation and one can obtain
a trajectory of � in the 8 dimensional space over time.
Each initial condition yields a unique trajectory and one
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Figure 8: Subspace of a phase-space plot. The plot shows
(�1(t); �2(t)) as t varies, i.e., the proportion of speakers
speaking languages L1 and L2 in the population. The
initial state of the population was homogeneous (speak-
ing language L1). The algorithm used was +Greedy
�Single value.

can then plot these trajectories obtaining a phase-space
plot. Each such trajectory corresponds to a line in the

8-dimensional plane given by
P8

i=1 �i = 1: One cannot
directly display such a high dimensional object, but we
plot in �gure 8 the projection of a particular trajectory
onto a two dimensional subspace given by (�1(t); �2(t))
(the proportion of speakers of L1 and L2) at di�erent
points in time.

As mentioned earlier, with a di�erent initial condition
we get a di�erent grammatical trajectory. The complete
state space picture is thus �lled with all the di�erent
trajectories corresponding to di�erent initial conditions.
Fig. 9 shows this.

4.3.2 Stability Issues

The phase-space plots show that many initial condi-
tions yield trajectories that seem to converge to a single
point in the state space. In the dynamical systems termi-
nology, this corresponds to a �xed point of the system|
a population mix that stays at the same composition.
Many natural questions arise at this stage. What are
the conditions for stability? How many �xed points are
there in a given system? How can we solve for them?
These are interesting questions but detailed answers are
not within the scope of the current paper. In lieu of a
more complete analysis we state here a �xed point theo-
rem that allows one to characterize the stable population
mixes.

First, some notational preliminaries. As before, let
Pi be the distribution on the sentences of the ith lan-
guage Li: From Pi; we can construct Ti; the transition
matrix whose elements are given by the explicit proce-
dure documented in Niyogi and Berwick (1993, 1994a,
1994b). The matrix Ti models a +Greedy �Single value
learner if the target language is Li (with sentences from
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Figure 9: Subspace of a Phase-space plot. The plot
shows (�1(t); �2(t)) as t varies for di�erent nonhomoge-
neous initial population conditions. The algorithm used
was +Greedy �Single value.

the target produced with Pi). Similarly, one can obtain
the matrices for other learning variants. Note that �xing
the Pi's �xes the Ti's and in so the Pi's are a di�erent
sort of \parameter" that characterize how the dynamical
system evolves.16 If the state of the parent population at
time t is �(t); then it is possible to show that the (true)
transition matrix for �Greedy �Single value learners is

T =
P8

i=1 �i(t)Ti: For the �nite case analysis, the fol-
lowing theorem holds:

Theorem 1 (Finite Case) A �xed point (stable point)
of the grammatical dynamical system (obtained by a
�Greedy �Single value learner operating on the 8 param-
eter space with k examples to choose its �nal hypothesis)
is a solution of the following equation:

�0 = (�1; : : : ; �8) = (1; : : : ; 1)0(

8X

i=1

�iTi)
k

Proof (Sketch): This equation is obtained simply by
setting �(t+1) = �(t). Note however, that this is an ex-
ample of a nonlinear multidimensional iterated function
map. The analysis of such dynamical systems is non-
trivial, and our theorem by no means captures all the
possibilities.

We can similarly state a theorem for the limiting
(asymptotic) case analysis.

Theorem 2 (Limiting or Asymptotic Analysis)
A �xed point (stable point) of the grammatical dynami-
cal system (obtained by a �Greedy �Single value learner

16There are thus two distinct kinds of parameters in our
model: �rst, parameters that de�ne the 2n languages and
de�ne the state-space of the system; and second, the Pi's
the characterize the way in which the system evolves and
are therefore the parameters of the complete grammatical
dynamical system.

operating on the 8 parameter space (given in�nite exam-
ples to choose its mature hypothesis) is a solution of the
following equation:

�0 = (�1; : : : ; �8) = (1; : : : ; 1)0(I �

8X

i=1

�iTi +ONE)�1

where ONE is the 8� 8 matrix with all its entries equal
to 1.

Proof: Again this is trivially obtained by setting �(t+
1) = �(t): The expression on the right provides an ana-
lytical expression for the update equation in the asymp-
totic case. See Resnick (1992) for details. All the caveats
mentioned in the proof section of the previous theorem
apply here as well.

Remark. We have just touched the surface as far as
the theoretical characterization of these grammatical dy-
namical systems are concerned. The main purpose of
this paper is to show that these dynamical systems ex-
ist as a logical consequence of assumptions about the
grammatical space and an acquisition theory. We have
exhibited only some preliminary simulations with these
systems. From a theoretical perspective, it would be
much more valuable to have complete characterizations
of such systems. Strogatz (1993) suggests that nonlin-
ear multidimensional mappings with greater than 3 di-
mensions are likely to be chaotic. It is also interesting
to note that iterated function maps de�ne fractal sets .
Such investigations are beyond the scope of this paper,
and might well be a fruitful area for further research.

5 Example 2: From Old French to

Modern French; Clark and Roberts

Analysis Revisited

So far, our examples have been based on a 3-parameter
linguistic theory for which we derived several di�erent
dynamical systems. Our goal was to concretely instan-
tiate our philosophical arguments, sketching the factors
that inuence evolutionary trajectories. In this section,
we briey consider a di�erent parametric linguistic sys-
tem studied by Clark and Roberts, 1993. The histori-
cal context in which Clark and Roberts advanced their
linguistic proposal is the evolution of Modern French
from Old French. Their parameters are intended to cap-
ture some, but of course not all, of this change. They
too use a learning algorithm|in their case, a genetic
algorithm|to account for historical change but do not
analyze their model from the dynamical systems view-
point. Here we adopt their parameterization, with all
its strengths and weaknesses, but consider an alternative
learning paradigm and the dynamical systems approach.

Extensive simulations in the earlier section reveal that
while the learnability problem of the 3-parameter space
can be solved by stochastic hill climbing algorithms, the
long term evolution of these algorithms have a behavior
that is at variance with the diachronic change actually
observed in historical linguistics. In particular, we saw
how there was a tendency to gain rather than lose the V2
parameter setting. While this could well be an artifact of
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the class of learning algorithms considered, a more likely
explanation is that loss of V2 (observed in many of the
world's languages like French, English, and so forth) is
due to an interaction of parameters and triggers other
than those considered in the previous section. We inves-
tigate this possibility and begin by �rst reviewing Clark
and Roberts' alternative parametric theory.

5.1 The Parametric Subspace and Data

We now consider a syntactic space involving the with
5 (boolean-valued) parameters. We do not attempt
to describe these parameters. The interested reader
should consult Haegeman (1991) for details and Clark
and Roberts (1993) for details.

1. p1: Case assignment under agreement (p1 = 1) or
not (p1 = 0).

2. p2: Case assignment under government (p2 = 1) or
not ((p2 = 0). Relevant triggers for this parameter
include \Adv V S", \S V O".

3. p3: Nominative clitics.

4. p4: Null Subject. Here relevant triggers would in-
clude \wh V S O".

5. p5: Verb-second V2. Triggers include \Adv V S" ,
and \S V O".

These 5 parameters de�ne a 32 grammar space. Each
grammar in this parametrized system can be represented
by a string of 5 bits depending upon the values of
p1; : : : ; p5; for instance, the �rst bit position corresponds
to case assignment under agreement. We can now look
at the surface strings (sentences) generated by each such
grammar. For the purpose of explaining how Old French
changed to Modern French, Clark and Roberts consider
the following key sentences. The parameter settings re-
quired to generate each sentence are provided in brack-
ets; an asterisk is a \doesn't matter" value and an \X"
means any phrase.
The Relevant Data

adv V S [*1**1]
SVO [*1**1] or [1***0]
wh V S O [*1***]
wh V S O [**1**]
X (pro) V O [*1*11] or [1**10]
X V s [**1*1]
X s V [**1*0]
X S V [1***0]
(S) V Y [*1*11]

The parameter settings provided in brackets set the
grammarswhich generate the sentence. For example, the
sentence form \adv V S" (corresponding to quickly ran
John), an incorrect word order in English) is generated
by all grammars that have case assignment under govern-
ment (the second element of the array set to 1, p2 = 1)
and verb second movement (p5 = 1). The other parame-
ters can be set to any value. Clearly there are 8 di�erent
grammars that can generate (alternatively parse) this
sentence. Similarly there are 16 grammars that generate
the form S V O (8 corresponding to parameter settings

of [*1**1] and 8 corresponding to parameter settings of
[1***0]) and 4 grammars that generate ((s) V Y).

Remark. Note that the sentence set Clark and Roberts
considered is only a subset of the the total number of
degree-0 sentences generated by the 32 grammars in
question. In order to directly compare their model with
ours, we have not attempted to expand the data set or �ll
out the space any further. As a result, all the grammars
do not have unique extensional properties, i.e., some gen-
erate the same set of sentences.

5.2 The Case of Diachronic Syntax Change in
French

Continuing with Clark and Roberts' analysis, within this
parameter space, it is historically observed that the lan-
guage spoken in France underwent a parametric change
from the twelfth century to modern times. In particu-
lar, they point out that both V2 and prodrop are lost,
illustrated by examples like these:
Loss of null subjects: pro-drop

(1) (Old French; +pro drop)
Si �rent (pro) grant joie la nuit
`thus (they) made great joy the night'

(2) (Modern French; �pro drop)
�Ainsi s'amusaient bien cette nuit
`thus (they) had fun that night'

Loss of V2

(3) (Old French; +V2)
Lors oirent ils venir un escoiz de tonoire
`then they heard come a clap of thunder'

(4) (Modern French; �V2)
�Puis entendirent-ils un coup de tonerre. `then they
heard a clap of thunder'

Clark and Roberts observe that it has been argued
this transition was brought about by the introduction
of new word orders during the �fteenth and sixteenth
centuries resulting in generations of children acquiring
slightly di�erent grammars and eventually culminating
in the grammar of modern French. A brief reconstruc-
tion of the historical process (after Clark and Roberts,
1993) runs as follows.
Old French; setting [11011] The language spoken
in the twelfth and thirteenth centuries had verb-second
movement and null subjects, both of which were dropped
by the twentieth century. The sentences generated by
the parameter settings corresponding to Old French are:

Old French
adv V S { [*1**1]
S V O { [*1**1] or [1***0]
wh V S O [*1***]
X (pro) V O [*1*11] or [1**10]

Note that from this data set it appears that both
the Case agreement and nominative clitics parameters
remain ambiguous. In particular, Old French is in a
subset-superset relation with another language (gener-
ated by the parameter settings of 11111). In this case,
possibly some kind of subset principle (Berwick, 1985)
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could be used by the learner; otherwise it is not clear how
the data would allow the learner to converge to the Old
French grammar in the �rst place. None of the �Greedy,
�Single value algorithms would converge uniquely to the
grammar of Old French.

The string (X)VS occurs with frequency 58% and
SV(X) occurs with 34% in Old French texts. I t is argued
that this frequency of (X)VS is high enough to cause the
V2 parameter to trigger to +V2.
Middle French In Middle French, the data is not con-
sistent with any of the 32 target grammars (equivalent
to a heterogenous population). Analysis of texts from
that period reveal that some old forms (like Adv V S)
decreased in frequency and new forms (like Adv S V)
increased. It is argued in Clark and Roberts that such
a frequency shift causes "erosion" of V2, brings about
parameter instability and ultimately convergence to the
grammar of Modern French. In this transition period
(i.e. when Middle French was spoken/written) the data
is of the following form:

adv V S [*1**1]; SVO [*1**1] or [1***0]; wh V S
O [*1***]; wh V s O [**1**]; X (pro)V O [*1*11] or
[1**10]; X V s [**1*1]; X s V [**1*0]; X S V [1***0];
(s)VY [*1*11]

Thus, we have old sentence patterns like Adv V S
(though it decreases in frequency and becomes only
10%), SVO, X (pro)V O and whVSO. The new sentence
patterns which emerge at this stage are adv S V (in-
creases in frequency to become 60%), X subjclitic V, V
subjclitic (pro)V Y (null subjects) , whV subjclitic O.
Modern French [10100] By the eighteenth century,
French had lost both the V2 parameter setting as well
as the null subject parameter setting. The sentence pat-
terns consistent with Modern French parameter settings
are SVO [*1**1] or [1***0], X S V [1***0], V s O [**1**].
Note that this data, though consistent with Modern
French, will not trigger all the parameter settings. In
this sense, Modern French (just like Old French) is not
uniquely learnable from data. However, as before, we
shall not concern ourselves overly with this, for the rel-
evant parameters (V2 and null subject) are uniquely set
by the data here.

5.3 Some Dynamical System Simulations

We can obtain dynamical systems for this parametric
space, for a TLA (or TLA-like) algorithm in a straight-
forward fashion. We show the results of two simulations
conducted with such dynamical systems.

5.3.1 Homogeneous Populations [Initial{Old
French]

We conducted a simulation on this new parameter
space using the Triggering Learning Algorithm. Recall
that the relevant Markov chain in this case has 32 states.
We start the simulation with a homogeneous population
speaking Old French (parameter setting = 11011). Our
goal was to see if misconvergence alone, could drive Old
French to Modern French.

Just as before, we can observe the linguistic compo-
sition of the population over several generations. It is
observed that in one generation, 15 percent of the chil-
dren converge to grammar 01011; 18 percent to grammar
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Figure 10: Evolution of speakers of di�erent languages
in a population starting o� with speakers only of Old
French.

01111; 33 percent to grammar 11011 (target) and 26 per-
cent to grammar 11111 with very few having converged
to other grammars. Thereafter, the population consists
mostly of speakers of these 4 languages, with one im-
portant di�erence: 15 percent of the speakers eventually
lose V2. In particular, they have acquired the gram-
mar 11110. Shown in �g. 10 are the percentage of the
population speaking the 4 languages mentioned above
as they evolve over 20 generations. Notice that in the
space of a few generations, the speakers of 11011, and
01011 have dropped out altogether. Most of the popula-
tion now speaks language 1111 (46 percent) and 01111
(27 percent). Fifteen percent of the population speaks
11110 and there is a smattering of other speakers. The
population remains roughly stable in this con�guration
thereafter.
Observations:

1. On examining the four languages to which the
system converges after one generation, we noice that
they share the same settings for the principles [Case as-
signemnt under government], [pro drop], and [V2]. These
correspond to the three parameters which are uniquely
set by data from Old French. The other two parameters
can take on any value. Consequently 4 languages are
generated all of which satisfy the data from Old French.

2. Recall our earlier remark that due to insu�cient
data, there were equivalent grammars in the parameter
system. It turns out that in this particular case, the
grammars (01011) and (11011) are identical as far as
their extensional properties are concerned; as are the
grammars (11111) and (01111).

3. There is subset relation between the two sets de-
scribed in (2). The grammar (11011) is in a subset rela-
tion with (11111). This explains why after a few gener-
ations most of the population switches to either (11111)
or (01111) (the superset grammars).

4. An interesting feature of the simulation is that 15
percent of the population eventually acquires the gram-
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mar (11110), i.e., they have lost the V2 parameter set-
ting. This is the �rst sign of instability of V2 that we
have seen in our simulations so far (for greedy algorithms
which are psychologically preferred). Recall that for such
algorithms, the V2 parameter was very stable in our pre-
vious example.

5.3.2 Heterogenous Populations (Mixtures)

The earlier section showed that with no new (foreign)
sentence patterns the grammatical system starting out
with only Old French speakers showed some tendency to
lose V2. However, the grammatical trajectory did not
terminate in Modern French. In order to more closely
duplicate this historically observed trajectory, we ex-
amine alternative inital conditions. We start our sim-
ulations with an initial condition which is a mixture of
two sources; data from Old French and data from New
French (reproducing in this sense, data similar to that
obtained from the Middle French period). Thus chil-
dren in the next generation observe new surface forms.
Most of the surface forms observed in Middle French are
covered by this mixture.
Observations:

1. On performing the simulations using the TLA as a
learning algorithm on this parameter space, an interest-
ing pattern is observed. Suppose the learner is exposed
to sentences with 90 percent generated by Old French
grammar (11011) and 10 percent by Modern French
grammar (10100), within one generation 22 percent of
the learners have converged to the grammar (11110) and
78 percent to the grammar (11111). Thus the learn-
ers set each of the parameter values to 1 except the
V2 parameter setting. Now Modern French is a non-V2
language; and 10 percent of data from Modern French
is su�cient to cause 22 percent of the speakers to lose
V2. This is the behaviour over one generation. The new
population (consisting of 78 percent speaking grammar
(11111) and 22 percent speaking grammar (11110)) re-
mains stable for ever.

2. Fig. 11 shows the proportion of speakers who have
lost V2 after one generation, as a function of the propor-
tion of sentences from the Modern French Source. The
shape of the curve is interesting. For small values of
the proportion of the Modern French source, the slope
of the curve is greater than 1. Thus there is a greater
tendency of speakers to lose V2 than to retain it. Thus
10 percent of novel sentences from the Modern French
source causes 20 percent of the population to lose V2;
similarly 20 percent of novel sentences from the Modern
French source causes 40 percent of the speakers to lose
V2. This e�ect wears o� later. This seems to capture
computationally the intuitive notion of many linguists
that a small change in inputs provided to children could
drive the system towards larger change.

3. Unfortunately, there are several shortcomings of
this particular simulation. First, we notice that mixing
Old and Modern French sources does not cause the de-
sired (historically observed) grammatical trajectory from
Old to Modern French (corresponding in our system to
movement from state (11011) to state (10100) in our
Markov Chain). Although we �nd that a small injection
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Figure 11: Tendency to lose V2 as a result of new
word orders introduced by Modern French source in our
Markov Model.

of sentences fromModern French causes a larger percent-
age of the population to lose V2 and gain subject clitics
(which are historically observed phenomena), neverthe-
less, the entire population retains the null subject set-
ting and case assignment under government. It should
be mentioned that Clark and Roberts argue that the
change in case assignment under government is the driv-
ing force which allows alternate parse-trees to be formed
and causes the parametric loss of V2 and null subject.
In this sense, it is a more fundamental change.

4. If the dynamical system is allowed to evolve, it ends
up in either of the two states (11111) or (11110). This is
essentially due to the subset relations these states (lan-
guages) have with other languages in the system. An-
other complication in the system is the equivalence of
several di�erent grammars (with respect to their surface
extensions) e.g. given the data we are considering, the
grammars (01011) and (11011) (Old French) generate
the same sentences. This leads to multiplicity of paths,
convergence to more than one target grammar and gen-
eral inelegance of the state-space description.
Future Directions: There are several possibilities to con-
sider here.

1. Using more data and �lling out the state-space
might yield greater insight. Note that we can also study
the development of other languages like Italian or Span-
ish within this framework and that might be useful.

2. TLA-like hill climbing algorithms do not pay at-
tention to the subset principle explicitly. It would be
interesting to explicitly program this into the learning
algorithm and observe the evolution thereafter.

3. There are often cases when several di�erent gram-
mars generate the same sentences or atleast equally well
�t the data. Algorithms which look only at surface
strings are unable then to distinguish between them re-
sulting in convergence to all of them with di�erent prob-
abilities in our stochastic setting. We saw an exam-
ple of this for convergence to four states earlier. Clark
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and Roberts suggest an elegance criterion by looking at
the parse-trees to decide between these grammars. This
di�erence between strong generative capacity and weak
generative capacity can easily be incorporated into the
Markov model as well. The transition probabilites, now,
will not depend upon the surface properties of the gram-
mars alone, but also upon the elegance of derivation for
each surface string.

4. Rather than the evolution of the population, one
could look at the evolution of the distribution of words.
One can also obtain bounds on frequencies with which
the new data in the Middle French Period must occur so
that the correct drift is observed.

6 Conclusions and Directions for

Future Research

In this paper, we have argued that any combination
of (grammatical theory, learning paradigm) leads to a
model of grammatical evolution and diachronic change.
A learning theory (paradigm) attempts to account for
how children (the individual child) solve the problem
of language acquisition. By considering a population of
such \child learners", we have arrived at a model of the
emergent, global, population behavior. The key point
is that such a model is a logical consequence of gram-
matical, and learning theories. Consequently, whenever
a linguist suggests a new grammatical, or learning the-
ory, they are also suggesting a particular evolutionary
theory|and the consequences of this need to be exam-
ined.

Historical Linguistics and Diachronic Criteria

Froma programmatic persepective, this paper has two
important consequences. First, it allows us to take a
formal, analytic view of historical linguistics. Most ac-
counts of language change have tended to be descriptive
in nature (though signi�cant exceptions are the work of
Lightfoot, Kroch, Clark and Roberts, among others). In
contrast, we place the study of historical linguistics (di-
achronic phenomena) on a scienti�c17 platform. In this
sense, our conception of historical linguistics is closest
in spirit to evolutionary theory and population biology18

(which attempts to describe the origin and changing pat-
terns of life) and cosmology (which attempts to describe
the origin and evolution of the physical universe).

Second, it allows us to formally pose a diachronic
criterion for the adequacy of grammatical theories. A
signi�cant body of work in learning theory, has al-
ready sharpened the learnability criterion for grammat-
ical theories|in other words, the class of grammars G
must be learnable by some psychologically plausible al-
gorithm from primary linguistic data. Now we can go
one step further. The class of grammars G (along with
a proposed learning algorithm A) can be reduced to a

17By scienti�c, we mean, the construction of models with
explanatory, and predictive powers{ models which can be
falsi�ed in the sense of Popper.

18Indeed, most previous attempts to model language
change, like that of Clark and Roberts (1993), and Kroch
(1990) have been inuenced by the evolutionary models.

dynamical system whose evolution must match that of
the true evolution of human languages (as reconstructed
from historical data).

We have attempted to lay the framework for the devel-
opment of research tools to study historical phenomena.
To concretely demonstrate that the grammatical dynam-
ical systems need not be impossibly di�cult to compute
(or simulate), we explicitly showed how to transform
parametrized theories, and memoryless learning algo-
rithms to dynamical systems. The speci�c simulations
of this paper are far too incomplete to have any long
term linguistic implications, though, we hope, it cer-
tainly forms a starting point for research in this direc-
tion. Nevertheless, there were certain interesting results
obtained.

1. We saw that the V2 parameter was more stable
in the 3-parameter case, than it was in the 5 parameter
case. This suggests that the loss of V2 (actually observed
in history) might have more to do with the choice of
parametrizations than learning algorithms, or primary
linguistic data (though, we suggest great caution, before
drawing strong conclusions on the basis of this study).

2. We were able to shed some light on the time course
of evolution. In particular, we saw how this was a deriva-
tive of more fundamental assumptions about initial pop-
ulation conditions, sentence distributions, and learning
algorithms.

3. We were able to formally develop notions of sys-
tem stability. Thus, certain parameters could change
with time, others might remain stable. This can now be
measured, and the conditions for stability or change can
be investigated.

4. We were able to demonstrate how one could tinker
with the system (by changing the algorithm, or the sen-
tence distributions, or maturational time) to allow evo-
lution in certain directions. This would suggest the kinds
of changes needed in linguistics for greater explanatory
adequacy.

Further Research

This has been our �rst attempt to de�ne the bound-
aries of the problem. There are several directions of fur-
ther research.

1. From a linguistic perspective, the most interesting
thing to do, would perhaps be the examination of alter-
native parametrized theories, and to track the change of
certain languages in the context of these theories (much
like our attempt to track the change of French in this
paper). Some worthwhile attempts would include a)
the study of parametric stress systems (Halle and Id-
sardi, 1992){and in particular, the evolution of modern
Greek stress patterns from proto-Indo European; b) the
investigation of the possibility that creoles correspond to
�xed points in parametric dynamical systems, a possibil-
ity which might explain the striking fact that all creoles
(irrespective of the linguistic origin, i.e., initial linguistic
composition of the population) have the same grammar;
c) the evolution of modern Urdu, with Hindi syntax, and
Persian vocabulary.

2. From a mathematical perspective, one could take
this research in many directions including a) the formal-
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ization of the update rule for other grammatical theories
and learning algorithms, and the characterization of the
dynamical systems implied therein b) the investigation
of stability issues more closely, and characterizing better
the phase-space plots c) recall that our dynamical sys-
tems are multi-dimensional non-linear iterated function
mappings|a recipe for chaotic behaviour, and a possi-
bility to investigate further.

It is our hope that research in this line will mature
to make useful contributions, both to linguistics, and in
view of the unusual nature of the dynamical systems in-
volved, to the study of such systems from amathematical
perspective.

References

[1] R. C. Berwick. The Acquisition of Syntactic Knowl-
edge. MIT Press, 1985.

[2] R. Clark and I. Roberts. A computational model
of language learnability and language change. Lin-
guistic Inquiry, 24(2):299{345, 1993.

[3] G. Altmann et al. A law of change in language.
In B. Brainard, editor, Historical Linguistics, pages
104{115, Studienverlag Dr. N. Brockmeyer., 1982.
Bochum, FRG.

[4] E. Gibson and K. Wexler. Triggers. Linguistic In-
quiry, 25, 1994.

[5] L. Haegeman. Introduction to Government and
Binding Theory. Blackwell: Cambridge, USA, 1991.

[6] A. S. Kroch. Grammatical theory and the quantita-
tive study of syntactic change. In Paper presented
at NWAVE 11, Georgetown Universtiy, 1982.

[7] A. S. Kroch. Function and gramar in the his-
tory of english: Periphrastic "do.". In Ralph Fa-
sold, editor, Language change and variation. Ams-
terdam:Benjamins. 133-172, 1989.

[8] Anthony S. Kroch. Reexes of grammar in pat-
terns of language change. Language Variation and
Change, pages 199{243, 1990.

[9] D. Lightfoot. How to Set Parameters. MIT Press,
Cambridge, MA, 1991.

[10] B. Mandelbrot. The Fractal Geometry of Nature.
New York, NY: W. H. Freeman and Co., 1982.

[11] P. Niyogi. The Informational Complexity of Learn-
ing From Examples. PhD thesis, Massachussetts
Institute of Technology, Cambridge, MA, 1994.

[12] P. Niyogi and R. C. Berwick. Formal models for
learning �nite parameter spaces. In P. Broeder and
J. Murre, editors,Models of Language Learning: In-
ductive and Deductive Approaches, chapter 14. MIT
Press; to appear, Cambridge, MA.

[13] P. Niyogi and R. C. Berwick. Formalizing triggers:
A learning model for �nite parameter spaces. Tech.
Report 1449, AI Lab., M.I.T., 1993.

[14] P. Niyogi and R. C. Berwick. A markov language
learning model for �nite parameter spaces. In Pro-
ceedings of 32nd meeting of Association for Com-
putational Linguistics, 1994.

[15] C. Osgood and T. Sebeok. Psycholinguistics: A
survey of theory and research problems. Journal of
Abnormal and Social Psychology, 49(4):1{203, 1954.

[16] S. Resnick. Adventures in Stochastic Processes.
Birkhauser, 1992.

[17] S. Strogatz. Nonlinear Dynamics and Chaos.
Addison-Wesley, 1993.

[18] U. Weinreich, W. Labov, and M. I. Herzog. Em-
pirical foundations for a theory of language change.
In W. P. Lehmann, editor, Directions for historical
linguistics: A symposium., pages 95{195. Austin:
University of Texas Press, 1968.

A The 3-parameter system of Gibson

and Wexler (1994)

The 3-parameter system discussed in Gibson and Wexler
(1994) includes two parameters from X-bar theory.
Speci�cally, they relate to speci�er-head relations, and
head-complement relations in phrase structure. The fol-
lowing parmetrized production rules denote this:

XP ! SpecX0(p1 = 0) or X0Spec(p1 = 1)

X0
! CompX0(p2 = 0) or X0Comp(p2 = 1)

X0
! X

A third parameter is related to verb movement. In
German, and Dutch root declarative clauses, it is ob-
served that the verb occupies exactly the second posi-
tion. This Verb-Second phenomenon might or might not
be present in the world's languages, and this variation is
captured by means of the V2 parameter.

The following table provides the unembedded (degree-
0) sentences from each of the 8 grammars (languages)
obtained by setting the 3 parameters of example 1 to
di�erent values. The languages are referred to as L1
through L8:
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